ESA SCIENCE HOME 
SEARCH:
LEONIDS Home
Contents
» ESA scientists search for shooting stars in Australia
» Leonids over the Caribbean
» Rosetta and the Leonids
» Tuning in to Radio Leonids
» Background
 
Resources
» Images
» Video
» Links
» Contact

Electrifying Leonids


While his colleagues concentrate on visual observations of the Leonids, Roland Trautner will be attempting to record tiny changes in the electric field caused by the glowing meteor trails.


"We have a prototype of a sensitive electric field sensor that is very difficult to test in laboratory conditions," explained Trautner. "It is even difficult to use outdoors in the Netherlands because of background electrical 'noise'."


"So we decided to take it Australia, where we can test it without interference from other electrical sources and we can also take the opportunity to try an exciting experiment," he said.


"We hope to confirm or rule out the influence of meteor impacts on the electric field in our atmosphere," he explained. "We expect the brighter fireballs to ionise the atoms in the upper atmosphere (*). This should cause tiny fluctuations in the electric field. However, it is a very difficult measurement to make. If we succeed, it will be the first time this has ever been done."


Roland Trautner will be equally busy testing another instrument, the Mutual Impedance probe. Like the SESAME instrument on the Rosetta lander, the MI probe is designed to measure how easily electrical current flows through the ground. This is a particularly useful technique for detecting subsurface water or ice, and so has potential for future applications on the Moon, Mars or Mercury.


"During the daytime, I will be trying out a new instrument design and testing the capability of the probe to identify water in the subsoil," he said.

"It must be tested under conditions similar to those which can be found on many planetary bodies, so this region is a suitable place for these tests," said Trautner. "I am not sure when I will sleep!" he added.


(*) Ionisation occurs when atoms (which are electrically neutral) are strongly heated and lose electrons (negatively charged particles). This causes the remaining particles (known as ions) to become electrically charged.

Previous: Shooting the Leonids

© ESA Science 2001.